Diversity of thalamic progenitor cells and postmitotic neurons.

نویسندگان

  • Yasushi Nakagawa
  • Tomomi Shimogori
چکیده

The vertebrate thalamus contains multiple sensory nuclei, and relays sensory information to corresponding cortical areas. Moreover, the thalamus actively regulates information transmission to the cortex by modulating the response magnitude, firing mode and synchrony of neurons according to behavioral demands. The thalamus serves many other functions including motor control, learning and memory, and emotion. Such functional importance of the thalamus necessitates a better understanding of its developmental mechanisms. In this review, we will first describe the morphological organization of the developing thalamus. We will then discuss how neuronal diversity is generated and nuclei are formed during thalamic development. The first step in generating neuronal diversity is the formation of spatial diversity of thalamic progenitor cells, which is controlled by locally-expressed signaling molecules such as Sonic hedgehog (Shh), Wnt proteins and Fgf8. Lastly we will describe the roles of several transcription factors in specification of neuronal identity and nuclei formation in the thalamus. Our review will provide a molecular perspective for the organization of the thalamus prior to thalamus-cortex circuit formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice.

The mammalian thalamus is located in the diencephalon and is composed of dozens of morphologically and functionally distinct nuclei. The majority of these nuclei project axons to the neocortex in unique patterns and play critical roles in sensory, motor, and cognitive functions. It has been assumed that the adult thalamus is derived from neural progenitor cells located within the alar plate of ...

متن کامل

Characterization of progenitor domains in the developing mouse thalamus.

To understand the molecular basis of the specification of thalamic nuclei, we analyzed the expression patterns of various transcription factors and defined progenitor cell populations in the embryonic mouse thalamus. We show that the basic helix-loop-helix (bHLH) transcription factor Olig3 is expressed in the entire thalamic ventricular zone and the zona limitans intrathalamica (ZLI). Next, we ...

متن کامل

GDE2 Regulates Subtype-Specific Motor Neuron Generation through Inhibition of Notch Signaling

The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, spec...

متن کامل

Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex.

The developing neocortex contains two types of progenitor cells for glutamatergic, pyramidal-projection neurons. The first type, radial glia, produce neurons and glia, divide at the ventricular surface, and express Pax6, a homeodomain transcription factor. The second type, intermediate progenitor cells, are derived from radial glia, produce only neurons, and divide away from the ventricular sur...

متن کامل

Dehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.

Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 35 10  شماره 

صفحات  -

تاریخ انتشار 2012